Search results for "Ab Initio Calculations"
showing 10 items of 62 documents
Towards an accurate molecular orbital theory for excited states : Ethene, butadiene, and hexatriene
1993
A newly proposed quantum chemical approach for ab initio calculations of electronic spectra of molecular systems is applied to the molecules ethene, trans‐1,3‐butadiene, and trans‐trans‐1,3,5‐hexatriene. The method has the aim of being accurate to better than 0.5 eV for excitation energies and is expected to provide structural and physical data for the excited states with good reliability. The approach is based on the complete active space (CAS) SCF method, which gives a proper description of the major features in the electronic structure of the excited state, independent of its complexity, accounts for all near degeneracy effects, and includes full orbital relaxation. Remaining dynamic ele…
The SO2F2 quasi-spherical top: Correspondence between tensorial and Watson's formalisms
2006
Abstract The SO2F2 quasi-spherical top molecule with C2v symmetry is considered as a distorted spherical top deriving from the SO 4 2 − tetrahedral ion. We present here a detailed correspondence between the tensorial formalism using the Td⊃C2v reorientation and the usual Hamiltonian of Watson. We have also performed ab initio calculations in order to determine the centrifugal distorsion constants in the vibrational ground state.
Conformational investigation of alpha,beta-dehydropeptides. VIII. N-acetyl-alpha,beta-dehydroamino acid N'-methylamides: conformation and electron de…
2009
The Fourier transform infrared spectra are analyzed in the regions of Vs(N-H), amide I, amide II and Vs(C alpha = C beta) bands for a series of Ac-delta Xaa-NHMe, where delta Xaa = delta Ala, (Z)-delta Abu, (Z)-delta Leu, (Z)-delta Phe and delta Val, to determine the predominant solution conformation of these alpha,beta-dehydropeptide-related molecules and the electron distribution perturbation in their amide bonds. The measurements were performed in dichloromethane (DCM). To confirm and rationalize the assignments, the spectra of the respective series of saturated Ac-Xaa-NHMe, recorded in DCM, and the spectra of these two series of unsaturated and saturated compounds, recorded in acetonitr…
Ab initio determination of the ionization potentials of DNA and RNA nucleobases
2006
Quantum chemical high level ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute vertical and adiabatic ionization potentials of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. Several states of their cations have been also calculated. The present results represent a systematic compendium of these magnitudes, establishing theoretical reference values at a level not reported before, calibrating computational strategies, and guiding the assignment of the features in the experimental photoelectron spectra. Daniel.Roca@uv.es Mercedes.Rubio@uv.es Manuela.Merchan@uv.es Luis.Serrano@uv.es
Synthesis and characterization of indium oxide at high pressures
2018
Introducción: La naturaleza es sorprendente pero a la vez limitada. A mi entender, nada tiene más potencial que aplicar el ingenio humano para modificar lo que nos rodea y crear algo completamente nuevo. La Física de la Materia Condensada es un campo que actualmente está ganando importancia en la Física moderna. En virtud de los éxitos logrados en Física de la Materia Condensada se han producido enormes avances en el campo de la electrónica cuántica, de los semiconductores y de la ciencia de materiales, teniendo como resultado numerosas aplicaciones tecnológicas que han cambiado nuestras vidas drásticamente en los últimos 50 años. Una de las ramas de la Física de la Materia Condensada es el…
Structural and Vibrational Properties of Corundum-type In2O3 Nanocrystals under Compression
2017
[EN] This work reports the structural and vibrational properties of nanocrystals of corundum-type In2O3 (rh-In2O3) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and theoretical simulations on bulk rh-In2O3. Nanocrystalline rh-In2O3 showed stability under compression at least up to 20 GPa, unlike bulk rh-In2O3 which gradually transforms to the orthorhombic Pbca (Rh2O3-III-type) structure above 12 14 GPa. The different stability range found in nanocrystallin…
Ultrafast decay of the excited singlet states of thioxanthone by internal conversion and intersystem crossing.
2010
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high-level ab initio CASPT2 calculations of the singlet- and triplet-state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin-orbit coupling terms. The initially populated singlet pi pi* state is shown to decay through internal conversion and intersystem crossing processes via intermediate n pi* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversio…
Density functional theory based screening of ternary alkali-transition metal borohydrides: a computational material design project.
2009
We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K M1; and 1 alkali, alkaline earth or 3d / 4d transition metal atom M2 plus two to five BH4 groups, i.e., M1M2BH42‐5, using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M1Al/ Mn/ FeBH44, Li/ NaZnBH43, and Na/ KNi/ CoBH43 alloys are …
Quantum-chemical determination of Born–Oppenheimer breakdown parameters for rotational constants: the open-shell species CN, CO+ and BO
2013
The quantum-chemical protocol for computing Born-Oppenheimer breakdown corrections to rotational constants in the case of diatomic molecules is extended to open-shell species. The deviation from the Born-Oppenheimer equilibrium rotational constant is obtained by considering three contributions: the adiabatic correction to the equilibrium bond distance, the electronic contribution to the moment of inertia requiring the computation of the rotational g-tensor, and the so-called Dunham correction. Values for the Born-Oppenheimer breakdown parameters of CN, CO+, and BO in their (2)sigma(+) electronic ground states are reported based on coupled-cluster calculations of the involved quantities and …
Ab initio calculations of pure and Co+2-doped MgF2 crystals
2020
This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.